tidyterra is a package that add common methods from
the tidyverse for SpatRaster
and SpatVectors objects created with the {terra} package. It
also adds specific geom_spat*()
functions for plotting
these kind of objects with {ggplot2}.
Spat* objects are not like regular data frames. They are a different type of objects, implemented via the S4 object system, and have their own syntax and computation methods, implemented on the {terra} package.
By implementing tidyverse methods for these objects, and more specifically {dplyr} and {tidyr} methods, a useR can now work more easily with Spat*, just like (s)he would do with tabular data.
Note that in terms of performance, {terra} is much more optimized for working for this kind of objects, so it is recommended also to learn a bit of {terra} syntax. Each function of {tidyterra} refers (when possible) to the corresponding equivalent on {terra}.
As previously mentioned, {tidyterra} is not optimized in terms of
performance. Specially when working with filter()
and
mutate()
methods, it can be slow.
As a rule of thumb, {tidyterra} can handle objects with less than
10.000.000 slots of information(i.e.,
terra::ncell(a_rast) * terra::nlyr(a_rast) < 10e6
).
Load {tidyterra} with additional libraries of the {tidyverse}:
library(tidyterra)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(tidyr)
Currently, the following methods are available:
tidyverse method | SpatVector | SpatRaster |
---|---|---|
tibble::as_tibble() |
✔️ | ✔️ |
dplyr::filter() |
✔️ | ✔️ |
dplyr::mutate() |
✔️ | ✔️ |
dplyr::pull() |
✔️ | ✔️ |
dplyr::relocate() |
✔️ | ✔️ |
dplyr::rename() |
✔️ | ✔️ |
dplyr::select() |
✔️ | ✔️ |
dplyr::slice() |
✔️ | ✔️ |
dplyr::transmute() |
✔️ | ✔️ |
tidyr::drop_na() |
✔️ | ✔️ (questioned) |
tidyr::replace_na() |
✔️ | ✔️ |
ggplot2::autoplot() |
✔️ | ✔️ |
ggplot2::fortify() |
✔️ to sf with sf::st_as_sf() |
✔️ To tibble with coordinates |
Let’s see some of them in action:
library(terra)
<- system.file("extdata/cyl_temp.tif", package = "tidyterra")
f
<- rast(f)
temp
temp#> class : SpatRaster
#> dimensions : 89, 116, 3 (nrow, ncol, nlyr)
#> resolution : 3856.617, 3856.617 (x, y)
#> extent : 2893583, 3340950, 2019451, 2362690 (xmin, xmax, ymin, ymax)
#> coord. ref. : ETRS89-extended / LAEA Europe (EPSG:3035)
#> source : cyl_temp.tif
#> names : tavg_04, tavg_05, tavg_06
#> min values : 0.565614, 4.294102, 8.817221
#> max values : 13.283829, 16.740898, 21.113781
<- temp %>%
mod select(-1) %>%
mutate(newcol = tavg_06 - tavg_05) %>%
relocate(newcol, .before = 1) %>%
replace_na(list(newcol = 3)) %>%
rename(difference = newcol)
mod#> class : SpatRaster
#> dimensions : 89, 116, 3 (nrow, ncol, nlyr)
#> resolution : 3856.617, 3856.617 (x, y)
#> extent : 2893583, 3340950, 2019451, 2362690 (xmin, xmax, ymin, ymax)
#> coord. ref. : ETRS89-extended / LAEA Europe (EPSG:3035)
#> sources : memory
#> memory
#> memory
#> names : difference, tavg_05, tavg_06
#> min values : 2.786910, 4.294102, 8.817221
#> max values : 5.408157, 16.740898, 21.113781
On the previous example, we had:
Eliminated the first layer of the raster
tavg_04
.
Created a new layer newcol
as the difference of the
layers tavg_05
and tavg_06.
Relocated newcol
as the first layer of the
SpatRaster
Replaced the NA
cells on newcol
with
3
.
Renamed newcol
to difference.
In all the process, the essential properties of the SpatRaster
(number of cells, columns and rows, extent, resolution and coordinate
reference system) have not been modified. Other methods as
filter()
, slice()
or drop_na()
can modify these properties, as they would do when applied to a data
frame (number of rows would be modified on that case).
{tidyterra} provides several geom_*
for SpatRasters.
When the SpatRaster has the CRS informed
(i.e. terra::crs(a_rast) != ""
), the geom uses
ggplot2::coord_sf()
, and may be also reprojected for
adjusting the coordinates to other spatial layers:
library(ggplot2)
# A faceted SpatRaster
ggplot() +
geom_spatraster(data = temp) +
facet_wrap(~lyr) +
scale_fill_whitebox_c(
palette = "muted",
na.value = "white"
)
# Contour lines for a specific layer
<- system.file("extdata/volcano2.tif", package = "tidyterra")
f_volcano <- rast(f_volcano)
volcano2
ggplot() +
geom_spatraster(data = volcano2) +
geom_spatraster_contour(data = volcano2, breaks = seq(80, 200, 5)) +
scale_fill_whitebox_c() +
coord_sf(expand = FALSE) +
labs(fill = "elevation")
# Contour filled
ggplot() +
geom_spatraster_contour_filled(data = volcano2) +
scale_fill_whitebox_d(palette = "atlas") +
labs(fill = "elevation")
With {tidyterra} you can also plot RGB SpatRasters to add imagery to your plots:
# Read a vector
<- system.file("extdata/cyl.gpkg", package = "tidyterra")
f_v <- vect(f_v)
v
# Read a tile
<- system.file("extdata/cyl_tile.tif", package = "tidyterra")
f_rgb
<- rast(f_rgb)
r_rgb
<- ggplot(v) +
rgb_plot geom_spatraster_rgb(data = r_rgb) +
geom_spatvector(fill = NA, size = 1)
rgb_plot
# Change CRS automatically
+
rgb_plot coord_sf(crs = 3035)
{tidyterra} provides selected scales that are suitable for creating hypsometric and bathymetric maps:
<- rast(system.file("extdata/asia.tif", package = "tidyterra"))
asia
asia#> class : SpatRaster
#> dimensions : 232, 432, 1 (nrow, ncol, nlyr)
#> resolution : 22550.66, 22512.94 (x, y)
#> extent : 7619120, 17361007, -1304745, 3918256 (xmin, xmax, ymin, ymax)
#> coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857)
#> source : asia.tif
#> name : file44bc291153f2
#> min value : -10071.50
#> max value : 6064.73
ggplot() +
geom_spatraster(data = asia) +
scale_fill_hypso_tint_c(
palette = "gmt_globe",
labels = scales::label_number(),
breaks = c(-10000, -5000, 0, 2500, 5000, 8000),
guide = guide_colorbar(
direction = "horizontal",
title.position = "top",
barwidth = 20
)+
) labs(
fill = "elevation (m)",
title = "Hypsometric map of Asia"
+
) theme_minimal() +
theme(legend.position = "bottom")